LIGO's SURF Students Look for the Perfect Wave
LIGO SURF students are profiled in Caltech news
"As the Advanced LIGO Project geared up last summer, 27 undergraduates from around the world became full partners in one of the biggest, most complex physics experiment ever.
Their contributions ranged from creating hardware and software for current use to helping design next-generation detectors.
Thanks to Caltech's Summer Undergraduate Research Fellowships (SURF) program, students have been part of LIGO since the 1990s—more than 350 of them. Some have gone on to careers in LIGO, and some are now mentoring students themselves. Anamaria Effler SURFed with LIGO in 2004 and 2005 before graduating from Caltech with a bachelor's degree in physics in 2006. But, she says, "I wasn't sure I wanted to go to grad school, so I worked as an operator at LIGO Hanford for three years." The experience moved her to enroll at Louisiana State, "the closest school to a LIGO site." Effler is now a Caltech postdoc at LIGO Livingston, and last summer she mentored an undergraduate from the University of Michigan–Ann Arbor in a project to track down noise sources generated within the interferometer itself.
Other students used Einstein's equations to simulate the waves that such a merger would generate. Says postdoctoral researcher Tjonnie Li, who mentored four students, "General relativity allows us to predict the waves' shapes quite precisely." But many physicists believe that, just as general relativity goes beyond Newton's laws, so will another theory go beyond relativity. "LIGO will be a good test, because every detail of the signal we see should match the predictions," Li adds. "One of my students was modeling how long it should take a pair of black holes to merge under various scenarios. If they merge faster than expected, it would mean that some energy is escaping in some way that general relativity did not predict. This might not point you to the right explanation, but it does tell you that there's something missing." Furthermore, Li says, by comparing their simulations to LIGO's actual data, researchers "can infer something about how the fundamental forces interact with one another. They're all equally strong when matter gets that dense."
Just as Advanced LIGO marks the next generation of detectors, LIGO's undergraduates embody the next generation of researchers. In the 2014–15 academic year, two of LIGO's three incoming graduate students had SURFed here while earning their bachelor's degrees elsewhere. Says Li, "It takes a lot of effort from all of the mentors, and in particular Alan for organizing all of it, but the benefits are immediately visible. If their interest has been piqued, they often do their PhDs in this field. They either come here, or go on to other institutions that do LIGO."
Excerpted from a Caltech news article by Douglas Smith.
"As the Advanced LIGO Project geared up last summer, 27 undergraduates from around the world became full partners in one of the biggest, most complex physics experiment ever.
Their contributions ranged from creating hardware and software for current use to helping design next-generation detectors.
Thanks to Caltech's Summer Undergraduate Research Fellowships (SURF) program, students have been part of LIGO since the 1990s—more than 350 of them. Some have gone on to careers in LIGO, and some are now mentoring students themselves. Anamaria Effler SURFed with LIGO in 2004 and 2005 before graduating from Caltech with a bachelor's degree in physics in 2006. But, she says, "I wasn't sure I wanted to go to grad school, so I worked as an operator at LIGO Hanford for three years." The experience moved her to enroll at Louisiana State, "the closest school to a LIGO site." Effler is now a Caltech postdoc at LIGO Livingston, and last summer she mentored an undergraduate from the University of Michigan–Ann Arbor in a project to track down noise sources generated within the interferometer itself.
Other students used Einstein's equations to simulate the waves that such a merger would generate. Says postdoctoral researcher Tjonnie Li, who mentored four students, "General relativity allows us to predict the waves' shapes quite precisely." But many physicists believe that, just as general relativity goes beyond Newton's laws, so will another theory go beyond relativity. "LIGO will be a good test, because every detail of the signal we see should match the predictions," Li adds. "One of my students was modeling how long it should take a pair of black holes to merge under various scenarios. If they merge faster than expected, it would mean that some energy is escaping in some way that general relativity did not predict. This might not point you to the right explanation, but it does tell you that there's something missing." Furthermore, Li says, by comparing their simulations to LIGO's actual data, researchers "can infer something about how the fundamental forces interact with one another. They're all equally strong when matter gets that dense."
Just as Advanced LIGO marks the next generation of detectors, LIGO's undergraduates embody the next generation of researchers. In the 2014–15 academic year, two of LIGO's three incoming graduate students had SURFed here while earning their bachelor's degrees elsewhere. Says Li, "It takes a lot of effort from all of the mentors, and in particular Alan for organizing all of it, but the benefits are immediately visible. If their interest has been piqued, they often do their PhDs in this field. They either come here, or go on to other institutions that do LIGO."
Excerpted from a Caltech news article by Douglas Smith.